Stabhyli: a tool for automatic stability verification of non-linear hybrid systems

  • Authors:
  • Eike Möhlmann;Oliver Theel

  • Affiliations:
  • Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;Carl von Ossietzky University of Oldenburg, Oldenburg, Germany

  • Venue:
  • Proceedings of the 16th international conference on Hybrid systems: computation and control
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present Stabhyli, a tool that automatically proves stability of non-linear hybrid systems. Hybrid systems are systems that exhibit discrete as well as continuous behavior. The stability property basically ensures that a system exposed to a faulty environment (e.g. suffering from disturbances) will be able to regain a "good" operation mode as long as errors occur not too frequently. Stabilizing Hybrid systems are omnipresent, for instance in control applications where a discrete controller is controlling a time-continuous process such as a car's movement or a particular chemical reaction. We have implemented a tool to automatically derive a certificate of stability for non-linear hybrid systems. Certificates are obtained by Lyapunov theory combined with decomposition and composition techniques.