Right on the MONEE: combining task- and environment-driven evolution

  • Authors:
  • Evert Haasdijk;Berend Weel;A. E. Eiben

  • Affiliations:
  • VU University Amsterdam, Amsterdam, Netherlands;VU University Amsterdam, Amserdamt, Netherlands;VU University Amsterdam, Amsterdam, Netherlands

  • Venue:
  • Proceedings of the 15th annual conference on Genetic and evolutionary computation
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Evolution can be employed for two goals. Firstly, to provide a force for adaptation to the environment as it does in nature and in many artificial life implementations - this allows the evolving population to survive. Secondly, evolution can provide a force for optimisation as is mostly seen in evolutionary robotics research - this causes the robots to do something useful. We propose the MONEE algorithmic framework as an approach to combine these two facets of evolution: to combine environment-driven and task-driven evolution. To achieve this, MONEE employs environment-driven and task-based parent selection schemes in parallel. We test this approach in a simulated experimental setting where the robots are tasked to collect two different kinds of puck. MONEE allows the robots to adapt their behaviour to successfully tackle these tasks while ensuring an equitable task distribution at no cost in task performance through a market-based mechanism. In environments that discourage robots performing multiple tasks and in environments where one task is easier than the other, MONEE's market mechanism prevents the population completely focussing on one task.