Nearest stable system using successive convex approximations

  • Authors:
  • Francois-Xavier Orbandexivry;Yurii Nesterov;Paul Van Dooren

  • Affiliations:
  • -;-;-

  • Venue:
  • Automatica (Journal of IFAC)
  • Year:
  • 2013

Quantified Score

Hi-index 22.14

Visualization

Abstract

Stability is a crucial property in the study of dynamical systems. We focus on the problem of enforcing the stability of a system a posteriori. The system can be a matrix or a polynomial either in continuous-time or in discrete-time. We present an algorithm that constructs a sequence of successive stable iterates that tend to a nearby stable approximation X of a given system A. The stable iterates are obtained by projecting A onto the convex approximations of the set of stable systems. Some possible applications for this method are correcting the error arising from some noise in system identification and a possible solver for bilinear matrix inequalities based on convex approximations. In the case of polynomials, a fair complexity is achieved by finding a closed form solution to first order optimality conditions.