Computationally unifying urban masterplanning

  • Authors:
  • David Birch;Paul H. J. Kelly;Anthony J. Field;Alvise Simondetti

  • Affiliations:
  • Imperial College London;Imperial College London;Imperial College London;Arup Foresight & Innovation

  • Venue:
  • Proceedings of the ACM International Conference on Computing Frontiers
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Architectural design, particularly in large scale masterplanning projects, has yet to fully undergo the computational revolution experienced by other design-led industries such as automotive and aerospace. These industries use computational frameworks to undertake automated design analysis and design space exploration. However, within the Architectural, Engineering and Construction (AEC) industries we find no such computational platforms. This precludes the rapid analysis needed for quantitative design iteration which is required for sustainable design. This is a current computing frontier. This paper considers the computational solutions to the challenges preventing such advances to improve architectural design performance for a more sustainable future. We present a practical discussion of the computational challenges and opportunities in this industry and present a computational framework "HierSynth" with a data model designed to the needs of this industry. We report the results and lessons learned from applying this framework to a major commercial urban masterplanning project. This framework was used to automate and augment existing practice and was used to undertake previously infeasible, designer lead, design space exploration. During the casestudy an order of magnitude more analysis cycles were undertaken than literature suggests is normal; each occurring in hours not days.