A cost-effective selective TMR for heterogeneous coarse-grained reconfigurable architectures based on DFG-level vulnerability analysis

  • Authors:
  • Takashi Imagawa;Hiroshi Tsutsui;Hiroyuki Ochi;Takashi Sato

  • Affiliations:
  • Kyoto University, Japan;Kyoto University, Japan;Kyoto University, Japan;Kyoto University, Japan

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper proposes a method to determine a priority for applying selective triple modular redundancy (selective TMR) against single event upset (SEU) to achieve cost-effective reliable implementation of an application circuit to a coarse-grained reconfigurable architecture (CGRA). The priority is determined by an estimation of the vulnerability of each node in the data flow graph (DFG) of the application circuit. The estimation is based on a weighted sum of the features and parameters of each node in the DFG which characterize impact of the SEU in the node to the output data. This method does not require time-consuming placement-and-routing processes, as well as extensive fault simulations for various triplicating patterns, which allows us to identify the set of nodes to be triplicated for minimizing the vulnerability under given area constraint at the early stage of design flow. Therefore, the proposed method enables us efficient design space exploration of reliability-oriented CGRAs and their applications.