Periodic jitter and bounded uncorrelated jitter decomposition using incoherent undersampling

  • Authors:
  • Nicholas L. Tzou;Debesh Bhatta;Sen-Wen Hsiao;Abhijit Chatterjee

  • Affiliations:
  • Georgia Institute of Technology, Atlanta;Georgia Institute of Technology, Atlanta;Georgia Institute of Technology, Atlanta;Georgia Institute of Technology, Atlanta

  • Venue:
  • Proceedings of the Conference on Design, Automation and Test in Europe
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Jitter measurement is an essential part for testing high speed digital I/O and clock distribution networks. Precise jitter characterization of signals at critical internal nodes provides valuable information for hardware fault diagnosis and next generation design. Recently, incoherent undersampling has been proposed as a low-cost solution for signal integrity characterization at high data rate. Incoherent undersampling drastically reduces the sampling rate compared to Nyquist rate sampling without relying on the availability of a data synchronous clock. In this paper, we propose a jitter decomposition and characterization method based on incoherent undersampling. Associated fundamental period estimation techniques along with properties of incoherent undersampling, are used to isolate the effects of periodic and periodic crosstalk jitter. Mathematical analysis and hardware experiments using commercial off-the-shelf components are performed to prove the viability of the proposed method.