Quantified Score

Hi-index 0.00

Visualization

Abstract

Early diagnosis of voice disorders and abnormalities by means of digital speech processing is a subject of interest for many researchers. Various methods are introduced in the literature, some of which are able to extensively discriminate pathological voices from normal ones. Voice disorders sorting, on the other hand, has received less attention due to the complexity of the problem. Although, previous publications show satisfactory results in classifying one type of disordered voice from normal cases, or two different types of abnormalities from each other, no comprehensive approach for automatic sorting of vocal abnormalities has been offered yet. In this paper, a solution for this problem is suggested. We create a powerful wavelet feature extraction approach, in which, instead of standard wavelets, adaptive wavelets are generated and applied to the voice signals. Orthogonal wavelets are parameterized via lattice structure and then, the optimal parameters are investigated through an iterative process, using the genetic algorithm (GA). GA is guided by the classifier results. Based on the generated wavelet, a wavelet-filterbank is constructed and the voice signals are decomposed to compute eight energy-based features. A support vector machine (SVM) then classifies the signals using the extracted features. Experimental results show that six various types of vocal disorders: paralysis, nodules, polyps, edema, spasmodic dysphonia and keratosis are fully sorted via the proposed method. This could be a successful step toward sorting a larger number of abnormalities associated with the vocal system.