Max flows in O(nm) time, or better

  • Authors:
  • James B. Orlin

  • Affiliations:
  • M.I.T., Cambridge, MA, USA

  • Venue:
  • Proceedings of the forty-fifth annual ACM symposium on Theory of computing
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we present improved polynomial time algorithms for the max flow problem defined on sparse networks with n nodes and m arcs. We show how to solve the max flow problem in O(nm + m31/16 log2 n) time. In the case that m = O(n1.06), this improves upon the best previous algorithm due to King, Rao, and Tarjan, who solved the max flow problem in O(nm logm/(n log n)n) time. This establishes that the max flow problem is solvable in O(nm) time for all values of n and m. In the case that m = O(n), we improve the running time to O(n2/ log n).