Correlating medical-dependent query features with image retrieval models using association rules

  • Authors:
  • Hajer Ayadi;Mouna Torjmen;Mariam Daoud;Maher Ben Jemaa;Jimmy Xiangji Huang

  • Affiliations:
  • ReDCAD Lab-Sfax University, Sfax, Tunisia;ReDCAD Lab-Sfax University, Sfax, Tunisia;IRLab Lab, York University, Toronto, Canada;ReDCAD Lab-Sfax University, Sfax, Tunisia;IRLab Lab, York University, Toronto, Canada

  • Venue:
  • Proceedings of the 22nd ACM international conference on Conference on information & knowledge management
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The increasing quantities of available medical resources have motivated the development of effective search tools and medical decision support systems. Medical image search tools help physicians in searching medical image datasets for diagnosing a disease or monitoring the stage of a disease given previous patient's image screenings. Image retrieval models are classified into three categories: content-based (visual), textual and combined models. In most of previous work, a unique image retrieval model is applied for any user formulated query independently of what retrieval model best suits the information need behind the query. The main challenge in medical image retrieval is to cope the semantic gap between user information needs and retrieval models. In this paper, we propose a novel approach for finding correlations between medical query features and retrieval models based on association rule mining. We define new medical-dependent query features such as image modality and presence of specific medical image terminology and make use of existing generic query features such as query specificity, ambiguity and cohesiveness. The proposed query features are then exploited into association rule mining for discovering rules which correlate query features to visual, textual or combined image retrieval models. Based on the discovered rules, we propose to use an associative classifier that finds the best suitable rule with a maximum feature coverage for a new query. Experiments are performed on Image CLEF queries from 2008 to 2012 where we evaluate the impact of our proposed query features on the classification performance. Results show that combining our proposed specific and generic query features is effective for classifying queries. A comparative study between our classifier, CBA, Naïve Bayes, Bayes Net and decision trees showed that our best coverage associative classifier outperforms existing classifiers where it achieves an improvement of 30%.