Performance analysis of in-network caching for content-centric networking

  • Authors:
  • Yusung Kim;Ikjun Yeom

  • Affiliations:
  • -;-

  • Venue:
  • Computer Networks: The International Journal of Computer and Telecommunications Networking
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

With the explosion of multimedia content, Internet bandwidth is wasted by repeated downloads of popular content. Recently, Content-Centric Networking (CCN), or the so-called Information-Centric Networking (ICN), has been proposed for efficient content delivery. In this paper, we investigate the performance of in-network caching for Named Data Networking (NDN), which is a promising CCN proposal. First, we examine the inefficiency of LRU (Least Recently Used) which is a basic cache replacement policy in NDN. Then we formulate the optimal content assignment for two in-network caching policies. One is Single-Path Caching, which allows a request to be served from routers only along the path between a requester and a content source. The other is Network-Wide Caching, which enables a request to be served from any router holding the requested content in a network. For both policies, we use a Mixed Integer Program to optimize the content assignment models by considering the link cost, cache size, and content popularity. We also consider the impact of link capacity and routing issues on the optimal content assignment. Our evaluation and analysis present the performance bounds of in-network caching on NDN in terms of the practical constraints, such as the link cost, link capacity, and cache size.