Towards optimization-safe systems: analyzing the impact of undefined behavior

  • Authors:
  • Xi Wang;Nickolai Zeldovich;M. Frans Kaashoek;Armando Solar-Lezama

  • Affiliations:
  • MIT CSAIL;MIT CSAIL;MIT CSAIL;MIT CSAIL

  • Venue:
  • Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper studies an emerging class of software bugs called optimization-unstable code: code that is unexpectedly discarded by compiler optimizations due to undefined behavior in the program. Unstable code is present in many systems, including the Linux kernel and the Postgres database. The consequences of unstable code range from incorrect functionality to missing security checks. To reason about unstable code, this paper proposes a novel model, which views unstable code in terms of optimizations that leverage undefined behavior. Using this model, we introduce a new static checker called Stack that precisely identifies unstable code. Applying Stack to widely used systems has uncovered 160 new bugs that have been confirmed and fixed by developers.