Topological effects on the performance of island model of parallel genetic algorithm

  • Authors:
  • Wang Guan;Kwok Yip Szeto

  • Affiliations:
  • Department of Physics, The Hong Kong University of Science and Technology, Hong Kong;Department of Physics, The Hong Kong University of Science and Technology, Hong Kong

  • Venue:
  • IWANN'13 Proceedings of the 12th international conference on Artificial Neural Networks: advences in computational intelligence - Volume Part II
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

The topological features of the communication network between computing nodes in Parallel Genetic Algorithms, under the framework of the island model, is discussed in the context of both the local rate of information exchange between nodes, and the global exchange rate that measures the level of information flow in the entire network. For optimal performance of parallel genetic algorithm for a set of benchmark functions, the connectivity of the network can be found, corresponding to a global information exchange rate between 40-70%. This range is obtained by statistical analysis on the search for solutions of four benchmark problems: the 0-1 knapsack, the Weierstrass's function, the Ackley's function, and the Modified Shekel's foxholes function. Our method is based on the cutting of links of a fully connected network to gradually decrease the connectivity, and compare the performance of the genetic algorithm on each network. Suggestions for the protocol in applying this general guideline in the design of a good communication network for parallel genetic algorithms are made, where the islands are connected with 40% of links of a fully connected network before fine tuning the parameters of the island model to enhance performance in a specific problem.