Plane 3-trees: embeddability and approximation

  • Authors:
  • Stephane Durocher;Debajyoti Mondal

  • Affiliations:
  • Department of Computer Science, University of Manitoba, Canada;Department of Computer Science, University of Manitoba, Canada

  • Venue:
  • WADS'13 Proceedings of the 13th international conference on Algorithms and Data Structures
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

We give an O(nlog3n)-time linear-space algorithm that, given a plane 3-tree G with n vertices and a set S of n points in the plane, determines whether G has a point-set embedding on S (i.e., a planar straight-line drawing of G where each vertex is mapped to a distinct point of S), improving the O(n4/3+ε)-time O(n4/3)-space algorithm of Moosa and Rahman. Given an arbitrary plane graph G and a point set S, Di Giacomo and Liotta gave an algorithm to compute 2-bend point-set embeddings of G on S using O(W3) area, where W is the length of the longest edge of the bounding box of S. Their algorithm uses O(W3) area even when the input graphs are restricted to plane 3-trees. We introduce new techniques for computing 2-bend point-set embeddings of plane 3-trees that takes only O(W2) area. We also give approximation algorithms for point-set embeddings of plane 3-trees. Our results on 2-bend point-set embeddings and approximate point-set embeddings hold for partial plane 3-trees (e.g., series-parallel graphs and Halin graphs).