Planar packing of binary trees

  • Authors:
  • Markus Geyer;Michael Hoffmann;Michael Kaufmann;Vincent Kusters;Csaba D. Tóth

  • Affiliations:
  • Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany;Institute of Theoretical Computer Science, ETH Zürich, Switzerland;Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany;Institute of Theoretical Computer Science, ETH Zürich, Switzerland;California State University Northridge and University of Calgary, Canada

  • Venue:
  • WADS'13 Proceedings of the 13th international conference on Algorithms and Data Structures
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In the graph packing problem we are given several graphs and have to map them into a single host graph G such that each edge of G is used at most once. Much research has been devoted to the packing of trees, especially to the case where the host graph must be planar. More formally, the problem is: Given any two trees T1 and T2 on n vertices, we want a simple planar graph G on n vertices such that the edges of G can be colored with two colors and the subgraph induced by the edges colored i is isomorphic to Ti, for i∈{1,2}. A clear exception that must be made is the star tree which cannot be packed together with any other tree. But a popular hypothesis states that this is the only exception, and all other pairs of trees admit a planar packing. Previous proof attempts lead to very limited results only, which include a tree and a spider tree, a tree and a caterpillar, two trees of diameter four and two isomorphic trees. We make a step forward and prove the hypothesis for any two binary trees. The proof is algorithmic and yields a linear time algorithm to compute a plane packing, that is, a suitable two-edge-colored host graph along with a planar embedding for it. In addition we can also guarantee several nice geometric properties for the embedding: vertices are embedded equidistantly on the x-axis and edges are embedded as semi-circles.