Acoustical ranging techniques in embedded wireless sensor networked devices

  • Authors:
  • Prasant Misra;Navinda Kottege;Branislav Kusy;Diethelm Ostry;Sanjay Jha

  • Affiliations:
  • University of New South Wales and Swedish Institute of Computer Science, Swedish ICT, Stockholm;Commonwealth Scientific and Industrial Research Organization, Brisbane;Commonwealth Scientific and Industrial Research Organization, Brisbane;Commonwealth Scientific and Industrial Research Organization, Sydney;University of New South Wales, Sydney

  • Venue:
  • ACM Transactions on Sensor Networks (TOSN)
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments, where, typically, there is a need for a higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation, and evaluation of acoustic (both ultrasound and audible) ranging systems. We distill the limitations of acoustic ranging and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler's effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20m (outdoor) and an average accuracy ≈2cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance.