A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows

  • Authors:
  • Stéphane Vincent;Jorge César Brändle De Motta;Arthur Sarthou;Jean-Luc Estivalezes;Olivier Simonin;Eric Climent

  • Affiliations:
  • Université de Bordeaux, Institut de Mécanique et Ingénierie (I2M) - UMR 5295, F-33400 Talence, France;ONERA, The French Aerospace Lab, 2, avenue Edouard Belin, 31055 Toulouse, France and Université de Toulouse, Institut de Mécanique des Fluides de Toulouse, IMFT, UMR 5502, Allée Cam ...;Université de Bordeaux, Institut de Mécanique et Ingénierie (I2M) - UMR 5295, F-33400 Talence, France and Université de Toulouse, Institut de Mécanique des Fluides de Toul ...;ONERA, The French Aerospace Lab, 2, avenue Edouard Belin, 31055 Toulouse, France and Université de Toulouse, Institut de Mécanique des Fluides de Toulouse, IMFT, UMR 5502, Allée Cam ...;Université de Toulouse, Institut de Mécanique des Fluides de Toulouse, IMFT, UMR 5502, Allée Camille Soula, 31400 Toulouse, France;Université de Toulouse, Institut de Mécanique des Fluides de Toulouse, IMFT, UMR 5502, Allée Camille Soula, 31400 Toulouse, France

  • Venue:
  • Journal of Computational Physics
  • Year:
  • 2014

Quantified Score

Hi-index 31.45

Visualization

Abstract

The direct numerical simulation of particle flows is investigated by a Lagrangian VOF approach and penalty methods of second order convergence in space for incompressible flows interacting with resolved particles on a fixed structured grid. A specific Eulerian volume of fluid method is developed with a Lagrangian tracking of the phase function while the solid and divergence free constraints are ensured implicitly in the motion equations thanks to fictitious domains formulations, adaptive augmented Lagrangian approaches and viscous penalty methods. A specific strategy for handling particle collisions and lubrication effects is also presented. Various dilute particle laden flows are considered for validating the models and numerical methods. Convergence studies are proposed for estimating the time and space convergence orders of the global DNS approach. Finally, two dense particle laden flows are simulated, namely the flow across a fixed array of cylinders and the fluidization of 2133 particles in a vertical pipe. The numerical solutions are compared to existing theoretical and experimental results with success.