A general technique for non-blocking trees

  • Authors:
  • Trevor Brown;Faith Ellen;Eric Ruppert

  • Affiliations:
  • University of Toronto, Toronto, ON, Canada;University of Toronto, Toronto, ON, Canada;York University, Toronto, ON, Canada

  • Venue:
  • Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel programming
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

We describe a general technique for obtaining provably correct, non-blocking implementations of a large class of tree data structures where pointers are directed from parents to children. Updates are permitted to modify any contiguous portion of the tree atomically. Our non-blocking algorithms make use of the LLX, SCX and VLX primitives, which are multi-word generalizations of the standard LL, SC and VL primitives and have been implemented from single-word CAS. To illustrate our technique, we describe how it can be used in a fairly straightforward way to obtain a non-blocking implementation of a chromatic tree, which is a relaxed variant of a red-black tree. The height of the tree at any time is O(c + log n), where n is the number of keys and c is the number of updates in progress. We provide an experimental performance analysis which demonstrates that our Java implementation of a chromatic tree rivals, and often significantly outperforms, other leading concurrent dictionaries.