Fast concurrent lock-free binary search trees

  • Authors:
  • Aravind Natarajan;Neeraj Mittal

  • Affiliations:
  • The University of Texas at Dallas, Richardson, TX, USA;The University of Texas at Dallas, Richardson, TX, USA

  • Venue:
  • Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel programming
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a new lock-free algorithm for concurrent manipulation of a binary search tree in an asynchronous shared memory system that supports search, insert and delete operations. In addition to read and write instructions, our algorithm uses (single-word) compare-and-swap (CAS) and bit-test-and-set (SETB) atomic instructions, both of which are commonly supported by many modern processors including Intel~64 and AMD64. In contrast to existing lock-free algorithms for a binary search tree, our algorithm is based on marking edges rather than nodes. As a result, when compared to other lock-free algorithms, modify (insert and delete) operations in our algorithm work on a smaller portion of the tree, thereby reducing conflicts, and execute fewer atomic instructions (one for insert and three for delete). Our experiments indicate that our lock-free algorithm significantly outperforms all other algorithms for a concurrent binary search tree in many cases, especially when contention is high, by as much as 100%.