A Study on Adaptive Time Token Priority-Based Queuing Scheme

  • Authors:
  • Chen Hua Fu

  • Affiliations:
  • Information Management Department, Management College, National Defense University, Taipei city, Taiwan

  • Venue:
  • Wireless Personal Communications: An International Journal
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

Several famous priority-based queuing schemes operated in a gateway to support differentiated services among internet traffic. Examining packet forwarding operations in these queueing schemes, they only support a priority-based service either in a packet enqueuing process or in a packet dequeuing process. If a queuing scheme can support priority-based services in both packet enqueuing/dequeuing processes; it would enhance differentiated service performance for internet traffic. This study proposes a priority-based queuing scheme with an adaptive time token allotment measure to support a differentiated packet forwarding process for different types of IP traffic both in packet enqueuing/dequeuing processes. Depending on packet sizes and packet forwarding priorities of IP traffic, the proposed queuing scheme assigns fix and adaptive time token thresholds dynamically to logical queuing buffers separately. With assigned time tokens, logical queuing buffers allow arrival IP packets to be enqueued in a differentiated way. Moreover, the proposed queuing scheme uses a transferred WRR dequeuing measure to enhance a differentiated packet forwarding process. The simulation results show that the proposed queuing scheme supports a differentiated packet forwarding process for different types of IP traffic. The differentiated packet forwarding performance supported by the proposed scheme is close to the IETF DiffServ scheme; this result shows that the proposed scheme can support differentiated packet forwarding performance for different types of IP traffic with a lower operation cost.