Meta-heuristic algorithms for optimized network flow wavelet-based image coding

  • Authors:
  • Huseyin Kusetogullari;Mark S. Leeson;Burak Kole;Evor L. Hines

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Applied Soft Computing
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

Optimal multipath selection to maximize the received multiple description coding (MDCs) in a lossy network model is proposed. Multiple description scalar quantization (MDSQ) has been applied to the wavelet coefficients of a color image to generate the MDCs which are combating transmission loss over lossy networks. In the networks, each received description raises the reconstruction quality of an MDC-coded signal (image, audio or video). In terms of maximizing the received descriptions, a greater number of optimal routings between source and destination must be obtained. The rainbow network flow (RNF) collaborated with effective meta-heuristic algorithms is a good approach to resolve it. Two meta-heuristic algorithms which are genetic algorithm (GA) and particle swarm optimization (PSO) have been utilized to solve the multi-objective optimization routing problem for finding optimal routings each of which is assigned as a distinct color by RNF to maximize the coded descriptions in a network model. By employing a local search based priority encoding method, each individual in GA and particle in PSO is represented as a potential solution. The proposed algorithms are compared with the multipath Dijkstra algorithm (MDA) for both finding optimal paths and providing reliable multimedia communication. The simulations run over various random network topologies and the results show that the PSO algorithm finds optimal routings effectively and maximizes the received MDCs with assistance of RNF, leading to reduce packet loss and increase throughput.