Research Article: Bioinformatics analysis of a non-specific nuclease from Yersinia enterocolitica subsp. palearctica

  • Authors:
  • Zhen-Hua Li;Zhen-Xing Tang;Xiu-Juan Fang;Zhi-Liang Zhang;Lu-E. Shi

  • Affiliations:
  • -;-;-;-;-

  • Venue:
  • Computational Biology and Chemistry
  • Year:
  • 2013

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, the physical and chemical characteristics, biological structure and function of a non-specific nuclease from Yersinia enterocolitica subsp. palearctica (Y. NSN) found in our group were studied using multiple bioinformatics approaches. The results showed that Y. NSN had 283 amino acids, a weight of 30,692.5ku and a certain hydrophilic property. Y. NSN had a signal peptide, no transmembrane domains and disulphide bonds. Cleavage site in Y. NSN was between pos. 23 and 24. The prediction result of the secondary structure showed Y. NSN was a coil structure-based protein. The ratio of @a-helix, @b-folded and random coil were 18.73%, 16.96% and 64.31%, respectively. Active sites were pos. 124, 125, 127, 157, 165 and 169. Mg^2^+ binding site was pos. 157. Substrate binding sites were pos. 124, 125 and 169. The analysis of multisequencing alignment and phylogenetic tree indicated that Y. NSN shared high similarity with the nuclease from Y. enterocolitica subsp. enterocolitica 8081. The enzyme activity results showed that Y. NSN was a nuclease with good thermostability.