Nano-CMOS thermal sensor design optimization for efficient temperature measurement

  • Authors:
  • Oghenekarho Okobiah;Saraju P. Mohanty;Elias Kougianos

  • Affiliations:
  • -;-;-

  • Venue:
  • Integration, the VLSI Journal
  • Year:
  • 2014

Quantified Score

Hi-index 0.00

Visualization

Abstract

We present a novel and efficient thermal sensor design methodology. The growing demand for power management on VLSI systems drives the need for accurate thermal sensors. Conventional design techniques for on-chip thermal sensors in nanometer technologies consume expensive design iterations and result in increased power consumption and area overhead. Power-efficient, high-sensitivity thermal sensors are important for reducing the thermal stress on the systems or circuits which are being monitored. The proposed design flow methodology, which incorporates a stochastic gradient descent (SGD) algorithm, optimizes the power consumption (including leakage) of IC subsystems. An illustration of the proposed design methodology is presented using a ring oscillator (RO) based on-chip thermal sensor which was designed using 45nm CMOS technology. The RO based thermal sensor has a resolution of 0.097^oC/bit. Experimental tests and analysis of the design methodology on a full layout-accurate parasitic netlist of the RO demonstrate the applicability of our methodology towards optimization of the power consumption with temperature resolution as a design constraint. A reduction of power consumption by 52% with a final area of 1389.1@mm^2 is obtained.