Improved Maximum Likelihood detection through sphere decoding combined with box optimization

  • Authors:
  • Victor M. Garcia-Molla;Antonio M. Vidal;Alberto Gonzalez;Sandra Roger

  • Affiliations:
  • -;-;-;-

  • Venue:
  • Signal Processing
  • Year:
  • 2014

Quantified Score

Hi-index 0.08

Visualization

Abstract

Sphere Decoding is a popular Maximum Likelihood algorithm that can be used to detect signals coming from multiple-input, multiple-output digital communication systems. It is well known that the complexity required to detect each signal with the Sphere Decoding algorithm may become unacceptable, especially for low signal-to-noise ratios. In this paper, we describe an auxiliary technique that drastically decreases the computation required to decode a signal. This technique was proposed by Stojnic, Hassibi and Vikalo in 2008, and is based on using continuous box-bounded minimization in combination with Sphere Decoding. Their implementation is, however, not competitive due to the box minimization algorithm selected. In this paper we prove that by judiciously selecting the box minimization algorithm and tailoring it to the Sphere Decoding environment, the computational complexity of the resulting algorithm for low signal-to-noise ratios is better (by orders of magnitude) than standard Sphere Decoding implementations.