Sparse Linear Least Squares Problems in Optimization

  • Authors:
  • Pontus Matstoms

  • Affiliations:
  • Department of Mathematics, Linkö/ping University, S-581 82 Linkö/ping, Sweden/ E-mail: pomat@math.liu.se

  • Venue:
  • Computational Optimization and Applications
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

Numerical and computational aspects of direct methods for largeand sparseleast squares problems are considered. After a brief survey of the most oftenused methods, we summarize the important conclusions made from anumerical comparison in matlab. Significantly improved algorithms haveduring the last 10-15 years made sparse QR factorization attractive, andcompetitive to previously recommended alternatives. Of particular importanceis the multifrontal approach, characterized by low fill-in, dense subproblemsand naturally implemented parallelism. We describe a Householder multifrontalscheme and its implementation on sequential and parallel computers. Availablesoftware has in practice a great influence on the choice of numericalalgorithms. Less appropriate algorithms are thus often used solely because ofexisting software packages. We briefly survey softwarepackages for the solution of sparse linear least squares problems. Finally,we focus on various applications from optimization, leading to the solution oflarge and sparse linear least squares problems. In particular, we concentrateon the important case where the coefficient matrix is a fixed general sparsematrix with a variable diagonal matrix below. Inner point methods forconstrained linear least squares problems give, for example, rise to suchsubproblems. Important gains can be made by taking advantage of structure.Closely related is also the choice of numerical method for these subproblems.We discuss why the less accurate normal equations tend to be sufficient inmany applications.