Fault Diameter of k-ary n-cube Networks

  • Authors:
  • Khaled Day;Abdel-Elah Al-Ayyoub

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Parallel and Distributed Systems
  • Year:
  • 1997

Quantified Score

Hi-index 0.01

Visualization

Abstract

We obtain the fault diameter of k-ary n-cube interconnection networks (also known as n-dimensional k-torus networks). We start by constructing a complete set of node-disjoint paths (i.e., as many paths as the degree) between any two nodes of a k-ary n-cube. Each of the obtained paths is of length zero, two, or four plus the minimum length except for one path in a special case (when the Hamming distance between the two nodes is one) where the increase over the minimum length may attain eight. These results improve those obtained in [8] where the length of some of the paths has a variable increase (which can be arbitrarily large) over the minimum length. These results are then used to derive the fault diameter of the k-ary n-cube, which is shown to be 驴 + 1 where 驴 is the fault free diameter.