Fast probabilistic modeling for combinatorial optimization

  • Authors:
  • Shumeet Baluja;Scott Davies

  • Affiliations:
  • -;-

  • Venue:
  • AAAI '98/IAAI '98 Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial intelligence
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

Probabilistic models have recently been utilized for the optimization of large combinatorial search problems. However, complex probabilistic models that attempt to capture inter-parameter dependencies can have prohibitive computational costs. The algorithm presented in this paper, termed COMIT, provides a method for using probabilistic models in conjunction with fast search techniques. We show how COMIT can be used with two very different fast search algorithms: hillclimbing and Population-based incremental learning (PBIL). The resulting algorithms maintain many of the benefits of probabilistic modeling, with far less computational expense. Extensive empirical results are provided; COMIT has been successfully applied to jobshop scheduling, traveling salesman, and knapsack problems. This paper also presents a review of probabilistic modeling for combinatorial optimization.