An evaluation of computing paradigms for N-body simulations on distributed memory architectures

  • Authors:
  • Collin McCurdy;John Mellor-Crummey

  • Affiliations:
  • Department of Computer Science, University of Wisconsin, Madison;Department of Computer Science, Rice University

  • Venue:
  • Proceedings of the seventh ACM SIGPLAN symposium on Principles and practice of parallel programming
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

The efficiency of HPF with respect to irregular applications is still largely unproven. While recent work has shown that a highly irregular hierarchical n-body force calculation method can be implemented in HPF, we have found that the implmentation contains inefficiencies which cause it to run up to a factor of three times slower than our hand-coded, explicitly parallel implementation. Our work examines these inefficiencies, determines that most of the extra overhead is due to a single aspect of the communication strategy, and demonstrates that fixing the communication strategy can bring the overheads of the HPF application to within 25% of those of the hand-coded version.