Predictive analysis of a wavefront application using LogGP

  • Authors:
  • David Sundaram-Stukel;Mary K. Vernon

  • Affiliations:
  • Epic Systems Corporation, 5301 Tokay Blvd, Madioson, WI;University of Wisconsin-Madison, Computer Sciences Dept., 1210 W. Dayton Street, Madison, WI

  • Venue:
  • Proceedings of the seventh ACM SIGPLAN symposium on Principles and practice of parallel programming
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper develops a highly accurate LogGP model of a complex wavefront application that uses MPI communication on the IBM SP/2. Key features of the model include: (1) elucidation of the principal wavefront synchronization structure, and (2) explicit high-fidelity models of the MPI-send and MPI-receive primitives. The MPI-send/receive models are used to derive L, o, and G from simple two-node micro-benchmarks. Other model parameters are obtained by measuring small application problem sizes on four SP nodes. Results show that the LogGP model predicts, in seconds and with a high degree of accuracy, measured application execution time for large problems running on 128 nodes. Detailed performance projections are provided for very large future processor configurations that are expected to be available to the application developers. These results indicate that scaling beyond one or two thousand nodes yields greatly diminished improvements in execution time, and that synchronization delays are a principal factor limiting the scalability of the application.