A data-parallel implementation of O(N) hierarchical N-body methods

  • Authors:
  • Yu Hu;S. Lennart Johnsson

  • Affiliations:
  • Division of Applied Sciences, Harvard University, Cambridge, Massachusetts;Department of Computer Sciences, University of Houston, Houston, Texas

  • Venue:
  • Supercomputing '96 Proceedings of the 1996 ACM/IEEE conference on Supercomputing
  • Year:
  • 1996

Quantified Score

Hi-index 0.00

Visualization

Abstract

The O(N) hierarchical N-body algorithms and Massively Parallel Processors allow particle systems of 100 million particles or more to be simulated in acceptable time. We present a data-parallel implementation of Anderson's method and demonstrate both efficiency and scalability of the implementation on the Connection Machine CM-5/5E systems. The communication time for large particle systems amounts to about 10-25%, and the overall efficiency is about 35%. The evaluation of the potential field of a system of 100 million particles takes 3 minutes and 15 minutes on a 256 node CM-5E, giving expected four and seven digits of accuracy, respectively. The speed of the code scales linearly with the number of processors and number of particles.