Latency-driven design of multi-purpose systems-on-chip

  • Authors:
  • Seapahn Maguerdichian;Milenko Drinic;Darko Kirovski

  • Affiliations:
  • -;-;-

  • Venue:
  • Proceedings of the 38th annual Design Automation Conference
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

Deep submicron technology has two major ramifications on the design process: (i) critical paths are being dominated by global interconnect rather than gate delays and (ii) ultra high levels of integration mandate designs that encompass numerous intra-synchronous blocks with decreased functional granularity and increased communication demands. These factors emphasize the importance of the on-chip bus network as the crucial high-performance enabler for future systems-on-chip. By using independent functional blocks with programmable connectivity, designers are able to build systems-on-chip capable of supporting different applications with exceptional levels of resource sharing. To address challenges in this design paradigm, we have developed a methodology that enables efficient bus network design with approximate timing verification and floorplanning of multi-purpose systems-on-chip in early design stages. The design platform iterates system synthesis and floorplanning to build min-area floorplans that satisfy statistical time constraints of applications. We demonstrate the effectiveness of our bus network design approach using examples from a multimedia benchmark suite.