Hybrid Run-time Power Management Technique for Real-time Embedded System with Voltage Scalable Processor

  • Authors:
  • Minyoung Kim;Soonhoi Ha

  • Affiliations:
  • Seoul National University, Seoul, Korea;Seoul National University, Seoul, Korea

  • Venue:
  • OM '01 Proceedings of the 2001 ACM SIGPLAN workshop on Optimization of middleware and distributed systems
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper presents a new run-time power management technique for real-time embedded systems which consist of a voltage scalable processor and power controllable peripheral devices. We have observed that there exist significant trade-offs in terms of energy consumption between the Dynamic Power Management (DPM) scheme and the Dynamic Voltage Scaling (DVS) scheme over a wide range of system operating conditions. The proposed technique fully exploits workload-variation slack time by partitioning the task into several timeslots and shut down the unneeded peripheral device on timeslot-by-timeslot basis. Through extensive simulations, the novelty and the usefulness of the proposed technique are demonstrated.