Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner

  • Authors:
  • Kenji Yamanishi;Jun-ichi Takeuchi

  • Affiliations:
  • NEC Corporation, 4-1-1,Miyazaki,Miyamae, Kawasaki,Kanagawa 216-8555,Japan;NEC Corporation, 4-1-1,Miyazaki,Miyamae, Kawasaki,Kanagawa 216-8555,Japan

  • Venue:
  • Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining
  • Year:
  • 2001

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper is concerned with the problem of detecting outliers from unlabeled data. In prior work we have developed SmartSifter, which is an on-line outlier detection algorithm based on unsupervised learning from data. On the basis of SmartSifter this paper yields a new framework for outlier filtering using both supervised and unsupervised learning techniques iteratively in order to make the detection process more effective and more understandable. The outline of the framework is as follows: In the first round, for an initial dataset, we run SmartSifter to give each data a score, with a high score indicating a high possibility of being an outlier. Next, giving positive labels to a number of higher scored data and negative labels to a number of lower scored data, we create labeled examples. Then we construct an outlier filtering rule by supervised learning from them. Here the rule is generated based on the principle of minimizing extended stochastic complexity. In the second round, for a new dataset, we filter the data using the constructed rule, then among the filtered data, we run SmartSifter again to evaluate the data in order to update the filtering rule. Applying of our framework to the network intrusion detection, we demonstrate that 1) it can significantly improve the accuracy of SmartSifter, and 2) outlier filtering rules can help the user to discover a general pattern of an outlier group.