Outlier Mining in Large High-Dimensional Data Sets

  • Authors:
  • Fabrizio Angiulli;Clara Pizzuti

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Knowledge and Data Engineering
  • Year:
  • 2005

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, a new definition of distance-based outlier and an algorithm, called HilOut, designed to efficiently detect the top n outliers of a large and high-dimensional data set are proposed. Given an integer k, the weight of a point is defined as the sum of the distances separating it from its k nearest-neighbors. Outlier are those points scoring the largest values of weight. The algorithm HilOut makes use of the notion of space-filling curve to linearize the data set, and it consists of two phases. The first phase provides an approximate solution, within a rough factor, after the execution of at most d + 1 sorts and scans of the data set, with temporal cost quadratic in d and linear in N and in k, where d is the number of dimensions of the data set and N is the number of points in the data set. During this phase, the algorithm isolates points candidate to be outliers and reduces this set at each iteration. If the size of this set becomes n, then the algorithm stops reporting the exact solution. The second phase calculates the exact solution with a final scan examining further the candidate outliers that remained after the first phase. Experimental results show that the algorithm always stops, reporting the exact solution, during the first phase after much less than d + 1 steps. We present both an in-memory and disk-based implementation of the HilOut algorithm and a thorough scaling analysis for real and synthetic data sets showing that the algorithm scales well in both cases.