Functional logic overloading

  • Authors:
  • Matthias Neubauer;Peter Thiemann;Martin Gasbichler;Michael Sperber

  • Affiliations:
  • Universität Freiburg;Universität Freiburg;Universität Tübingen;Universität Tübingen

  • Venue:
  • POPL '02 Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Functional logic overloading is a novel approach to user-defined overloading that extends Haskell's concept of type classes in significant ways. Whereas type classes are conceptually predicates on types in standard Haskell, they are type functions in our approach. Thus, we can base type inference on the evaluation of functional logic programs. Functional logic programming provides a solid theoretical foundation for type functions and, at the same time, allows for programmable overloading resolution strategies by choosing different evaluation strategies for functional logic programs. Type inference with type functions is an instance of type inference with constrained types, where the underlying constraint system is defined by a functional logic program. We have designed a variant of Haskell which supports our approach to overloading, and implemented a prototype front-end for the language.