Making sparse Gaussian elimination scalable by static pivoting

  • Authors:
  • Xiaoye S. Li;James W. Demmel

  • Affiliations:
  • NERSC, Berkeley, CA;University of California, Berkeley, CA

  • Venue:
  • SC '98 Proceedings of the 1998 ACM/IEEE conference on Supercomputing
  • Year:
  • 1998

Quantified Score

Hi-index 0.00

Visualization

Abstract

We propose several techniques as alternatives to partial pivoting to stabilize sparse Gaussian elimination. From numerical experiments we demonstrate that for a wide range of problems the new method is as stable as partial pivoting. The main advantage of the new method over partial pivoting is that it permits a priori determination of data structures and communication pattern for Gaussian elimination, which makes it more scalable on distributed memory machines. Based on this a priori knowledge, we design highly parallel algorithms for both sparse Gaussian elimination and triangular solve and we show that they are suitable for large-scale distributed memory machines.