Heuristics for semi-external depth first search on directed graphs

  • Authors:
  • Jop F. Sibeyn;James Abello;Ulrich Meyer

  • Affiliations:
  • Martin-Luther-Universitäe-Wittenberg, Halle, Germany;ATT Labs Research, Florham Park, NJ;Max-Planck-Institut für Informatik, Saarbrücken, Germany

  • Venue:
  • Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Computing the strong components of a directed graph is an essential operation for a basic structural analysis of it. This problem can be solved by twice running a depth-first search (DFS). In an external setting, in which all data can no longer be stored in the main memory, the DFS problem is unsolved so far. Assuming that node-related data can be stored internally, semi-external computing does not make the problem substantially easier. Considering the definite need to analyze very large graphs, we have developed a set of heuristics which together allow the performance of semi-external DFS for directed graphs in practice. The heuristics have been applied to graphs with very different graph properties, including "web graphs" as described in the most recent literature and some large call graphs from ATT. Depending on the graph structure, the program is between 10 and 200 times faster than the best alternative, a factor that will further increase with future technological developments.