Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses

  • Authors:
  • Adam R. Klivans;Dieter van Melkebeek

  • Affiliations:
  • -;-

  • Venue:
  • SIAM Journal on Computing
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Traditional hardness versus randomness results focus on time-efficient randomized decision procedures. We generalize these trade-offs to a much wider class of randomized processes. We work out various applications, most notably to derandomizing Arthur-Merlin games. We show that every language with a bounded round Arthur-Merlin game has subexponential size membership proofs for infinitely many input lengths unless exponential time coincides with the third level of the polynomial-time hierarchy (and hence the polynomial-time hierarchy collapses). Since the graph nonisomorphism problem has a bounded round Arthur-Merlin game, this provides the first strong evidence that graph nonisomorphism has subexponential size proofs. We also establish hardness versus randomness trade-offs for space bounded computation.