Effective Computation by Humans and Machines

  • Authors:
  • Oron Shagrir

  • Affiliations:
  • Department of Philosophy, The Hebrew University of Jerusalem, Jerusalem 91905, Israel/ E-mail: shagrir@cc.huji.ac.il

  • Venue:
  • Minds and Machines
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing argument for CTT by analyzing the processes carried out by a human computer. I then contend that if the Gandy–Sieg account is correct, then the notion of effective computability has changed after 1936. Today computer scientists view effective computability in terms of finite machine computation. My contention is supported by the current formulations of CTT, which always refer to machine computation, and by the current argumentation for CTT, which is different from the main arguments advanced by Turing and Church. I finally turn to discuss Robin Gandy's characterization of machine computation. I suggest that there is an ambiguity regarding the types of machines Gandy was postulating. I offer three interpretations, which differ in their scope and limitations, and conclude that none provides the basis for claiming that Gandy characterized finite machine computation.