Enabling trusted software integrity

  • Authors:
  • Darko Kirovski;Milenko Drinić;Miodrag Potkonjak

  • Affiliations:
  • One Microsoft Way, Redmond, WA;University of California, Los Angeles, CA;University of California, Los Angeles, CA

  • Venue:
  • Proceedings of the 10th international conference on Architectural support for programming languages and operating systems
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Preventing execution of unauthorized software on a given computer plays a pivotal role in system security. The key problem is that although a program at the beginning of its execution can be verified as authentic, while running, its execution flow can be redirected to externally injected malicious code using, for example, a buffer overflow exploit. Existing techniques address this problem by trying to detect the intrusion at run-time or by formally verifying that the software is not prone to a particular attack.We take a radically different approach to this problem. We aim at intrusion prevention as the core technology for enabling secure computing systems. Intrusion prevention systems force an adversary to solve a computationally hard task in order to create a binary that can be executed on a given machine. In this paper, we present an exemplary system--SPEF--a combination of architectural and compilation techniques that ensure software integrity at run-time. SPEF embeds encrypted, processor-specific constraints into each block of instructions at software installation time and then verifies their existence at run-time. Thus, the processor can execute only properly installed programs, which makes installation the only system gate that needs to be protected. We have designed a SPEF prototype based on the ARM instruction set and validated its impact on security and performance using the MediaBench suite of applications.