Weighted Constraint Aggregation in Fuzzy Optimization

  • Authors:
  • U. Kaymak;J. M. Sousa

  • Affiliations:
  • Erasmus University Rotterdam, Faculty of Economics, Department of Computer Science, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands u.kaymak@ieee.org;Technical University of Lisbon, Instituto Superior Técnico, Dept. of Mechanical Engineering/GCAR-IDMEC, Av. Rovisco Pais, 1049-001 Lisbon, Portugal jmsousa@ist.utl.pt

  • Venue:
  • Constraints
  • Year:
  • 2003

Quantified Score

Hi-index 0.00

Visualization

Abstract

Many practical optimization problems are characterized by some flexibility in the problem constraints, where this flexibility can be exploited for additional trade-off between improving the objective function and satisfying the constraints. Fuzzy sets have proven to be a suitable representation for modeling this type of soft constraints. Conventionally, the fuzzy optimization problem in such a setting is defined as the simultaneous satisfaction of the constraints and the goals. No additional distinction is assumed to exist amongst the constraints and the goals. This paper proposes an extension of this model for satisfying the problem constraints and the goals, where preference for different constraints and goals can be specified by the decision-maker. The difference in the preference for the constraints is represented by a set of associated weight factors, which influence the nature of trade-off between improving the optimization objectives and satisfying various constraints. Simultaneous weighted satisfaction of various criteria is modeled by using the recently proposed weighted extensions of (Archimedean) fuzzy t-norms. The weighted satisfaction of the problem constraints and goals are demonstrated by using a simple fuzzy linear programming problem. The framework, however, is more general, and it can also be applied to fuzzy mathematical programming problems and multi-objective fuzzy optimization.