Adaptive-Size Meshes for Rigid and Nonrigid Shape Analysis and Synthesis

  • Authors:
  • W. C. Huang;D. B. Goldgof

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Pattern Analysis and Machine Intelligence
  • Year:
  • 1993

Quantified Score

Hi-index 0.14

Visualization

Abstract

A physically based modeling method that uses adaptive-size meshes to model surfaces of rigid and nonrigid objects is presented. The initial model uses an a priori determined mesh size. However, the mesh size increases or decreases dynamically during surface reconstruction to locate nodes near surface areas of interest (like high curvature points) and to optimize the fitting error. Further, presented with multiple 3-D data frames, the mesh size varies as the data surface undergoes nonrigid motion. This model is used to reconstruct 3-D surfaces, analyze the nonrigid motion, track the corresponding points in nonrigid motion, and create graphic animation and visualization. The method was tested on real range data, on simulated nonrigid motion, and on real data for the left ventricular motion.