Ancestor Controlled Submodule Inclusion in Design Databases

  • Authors:
  • L. Yu;D. J. Rosenkrantz

  • Affiliations:
  • -;-

  • Venue:
  • IEEE Transactions on Knowledge and Data Engineering
  • Year:
  • 1993

Quantified Score

Hi-index 0.00

Visualization

Abstract

A paradigm is proposed for representing hierarchically specified design data in CAD database systems in which there are alternate expansions of hierarchically specified modules. The paradigm uses an ancestor-based scheme to control which instances of submodules are to be placed in the expansion of each instance of a given module and is formalized using a versioned directed acyclic multigraph (VDAG). The approach is aimed at reducing storage space in engineering design database systems and at providing a means for designers to specify alternate expansions of a module. The VDAG model is defined, and a mechanism by which a VDAG generates an exploded forest of design trees is described. Algorithms are provided to generate a design forest from a given VDAG, determine whether one module is contained by a larger module, extract a version from a VDAG, test whether two VDAGs are equivalent, and try to reduce the size of a VDAG. The problems of module containment and VDAG inequivalence are shown to be NP-complete, and the problem of finding a minimum sized VDAG equivalent to a given VDAG is shown to be NP-hard.