Analytical Image Models and Their Applications

  • Authors:
  • Anuj Srivastava;X. Liu;Ulf Grenander

  • Affiliations:
  • -;-;-

  • Venue:
  • ECCV '02 Proceedings of the 7th European Conference on Computer Vision-Part I
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

In this paper, we study a family of analytical probability models for images within the spectral representation framework. First the input image is decomposed using a bank of filters, and probability models are imposed on the filter outputs (or spectral components). A two-parameter analytical form, called a Bessel K form, derived based on a generator model, is used to model the marginal probabilities of these spectral components. The Bessel K parameters can be estimated efficiently from the filtered images and extensive simulations using video, infrared, and range images have demonstrated Bessel K form's fit to the observed histograms. The effectiveness of Bessel K forms is also demonstrated through texture modeling and synthesis. In contrast to numeric-based dimension reduction representations, which are derived purely based on numerical methods, the Bessel K representations are derived based on object representations and this enables us to establish relationships between the Bessel parameters and certain characteristics of the imaged objects. We have derived a pseudometric on the image space to quantify image similarities/differences using an analytical expression for L2-metric on the set of Bessel K forms. We have applied the Bessel K representation to texture modeling and synthesis, clutter classification, pruning of hypotheses for object recognition, and object classification. Results show that Bessel K representation captures important image features, suggesting its role in building efficient image understanding paradigms and systems.