Detection of Orthogonal Interval Relations

  • Authors:
  • Punit Chandra;Ajay D. Kshemkalyani

  • Affiliations:
  • -;-

  • Venue:
  • HiPC '02 Proceedings of the 9th International Conference on High Performance Computing
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

The complete set R of orthogonal temporal interactions between pairs of intervals, formulated by Kshemkalyani, allows the detailed specification of the manner in which intervals can be related to one another in a distributed execution. This paper presents a distributed algorithm to detect whether pre-specified interaction types between intervals at different processes hold. Specifically, for each pair of processes i and j, given a relation ri, j from the set of orthogonal relations R, this paper presents a distributed (on-line) algorithm to determine the intervals, if they exist, one from each process, such that each relation ri, j is satisfied for that (i, j) process pair. The algorithm uses O(n min(np, 4mn)) messages of size O(n) each, where n is the number of processes, m is the maximum number of messages sent by any process, and p is the maximum number of intervals at any process. The average time complexity per process is O(min(np, 4mn)), and the total space complexity across all the processes is min(4pn2 - 2np, 10mn2).