Hardware Versus Software Implementation of COMA

  • Authors:
  • Adrian Moga;Michel Dubois;Alain Gefflaut

  • Affiliations:
  • -;-;-

  • Venue:
  • ICPP '97 Proceedings of the international Conference on Parallel Processing
  • Year:
  • 1997

Quantified Score

Hi-index 0.00

Visualization

Abstract

Traditionally, cache coherence in multiprocessors has been maintained in hardware. However, the cost-effectiveness of hardwired protocols is questionable. Virtual Shared Memory systems have highlighted the many advantages of software-implemented protocols, albeit at a performance price. The performance gap is narrowed by hybrid systems with the addition of hardware support for fine-grain sharing. We have developed a software protocol for a COMA (Cache-Only Memory Architecture). We call the system SC-COMA for Software-Controlled COMA, to emphasize that the protocol engine is emulated by software executed on the main processor. Contrary to user-level protocols, the software handling coherence events in SC-COMA runs in sub-kernel mode, transparently providing the same services to applications as a hardware counterpart. The software emulation layer has been written and we compare SC-COMA to an idealized hardware COMA through detailed simulations. Our results show that SC-COMA is competitive. On systems with 32 processors, it achieves a slowdown of 11-56% with respect to its hardware counterpart, across a range of applications and memory pressures. SC-COMA scales well, up to 32 nodes. A study on the impact of faster processors on SC-COMA's relative performance indicates a consistent improvement, but with a limitation due to the loosely-integrated design. We conclude that SC-COMA is a viable solution to easily transform networks of workstations into powerful multiprocessors.