Tempest and typhoon: user-level shared memory

  • Authors:
  • S. K. Reinhardt;J. R. Larus;D. A. Wood

  • Affiliations:
  • Computer Sciences Department, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI;Computer Sciences Department, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI;Computer Sciences Department, University of Wisconsin-Madison, 1210 West Dayton Street, Madison, WI

  • Venue:
  • ISCA '94 Proceedings of the 21st annual international symposium on Computer architecture
  • Year:
  • 1994

Quantified Score

Hi-index 0.01

Visualization

Abstract

Future parallel computers must efficiently execute not only hand-coded applications but also programs written in high-level, parallel programming languages. Today's machines limit these programs to a single communication paradigm, either message-passing or shared-memory, which results in uneven performance. This paper addresses this problem by defining an interface, Tempest, that exposes low-level communication and memory-system mechanisms so programmers and compilers can customize policies for a given application. Typhoon is a proposed hardware platform that implements these mechanisms with a fully-programmable, user-level processor in the network interface. We demonstrate the utility of Tempest with two examples. First, the Stache protocol uses Tempest's finegrain access control mechanisms to manage part of a processor's local memory as a large, fully-associative cache for remote data. We simulated Typhoon on the Wisconsin Wind Tunnel and found that Stache running on Typhoon performs comparably (±30%) to an all-hardware DirNNB cache-coherence protocol for five shared-memory programs. Second, we illustrate how programmers or compilers can use Tempest's flexibility to exploit an application's sharing patterns with a custom protocol. For the EM3D application, the custom protocol improves performance up to 35% over the all-hardware protocol.