A Precise Fixpoint Reaching Definition Analysis for Arrays

  • Authors:
  • Jean-Francois Collard;Martin Griebl

  • Affiliations:
  • -;-

  • Venue:
  • LCPC '99 Proceedings of the 12th International Workshop on Languages and Compilers for Parallel Computing
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

This paper describes a precise reaching definition (RD) analysis tuned for arrays. RD analyses are of two kinds. The first group, Maximal Fixed Point (MFP) analyses, considers arrays as indivisible objects and does not contrast the side-effects of separate instances of writes. Its main benefit, however, is its wide applicability (e.g. to any unstructured program). On the other hand, analyses based on integer linear programming are able to pinpoint, for a given read instance, which instance of which write reference actually defined the read value. They are, however, restricted to limited classes of programs. Our analysis tries to take the best of both worlds by computing, in an iterated MFP framework, instancewise RDs of array elements.