Learning Options in Reinforcement Learning

  • Authors:
  • Martin Stolle;Doina Precup

  • Affiliations:
  • -;-

  • Venue:
  • Proceedings of the 5th International Symposium on Abstraction, Reformulation and Approximation
  • Year:
  • 2002

Quantified Score

Hi-index 0.00

Visualization

Abstract

Temporally extended actions (e.g., macro actions) have proven very useful for speeding up learning, ensuring robustness and building prior knowledge into AI systems. The options framework (Precup, 2000; Sutton, Precup & Singh, 1999) provides a natural way of incorporating such actions into reinforcement learning systems, but leaves open the issue of howgood options might be identified. In this paper, we empirically explore a simple approach to creating options. The underlying assumption is that the agent will be asked to perform different goalachievement tasks in an environment that is otherwise the same over time. Our approach is based on the intuition that states that are frequently visited on system trajectories, could prove to be useful subgoals (e.g., McGovern & Barto, 2001; Iba, 1989).We propose a greedy algorithm for identifying subgoals based on state visitation counts. We present empirical studies of this approach in two gridworld navigation tasks. One of the environments we explored contains bottleneck states, and the algorithm indeed finds these states, as expected. The second environment is an empty gridworld with no obstacles. Although the environment does not contain any obvious subgoals, our approach still finds useful options, which essentially allow the agent to explore the environment more quickly.