On Graph Powers for Leaf-Labeled Trees

  • Authors:
  • Naomi Nishimura;Prabhakar Ragde;Dimitrios M. Thilikos

  • Affiliations:
  • -;-;-

  • Venue:
  • SWAT '00 Proceedings of the 7th Scandinavian Workshop on Algorithm Theory
  • Year:
  • 2000

Quantified Score

Hi-index 0.00

Visualization

Abstract

We extend the well-studied concept of a graph power to that of a k-leaf power G of a tree T: G is formed by creating a node for each leaf in the tree and an edge between a pair of nodes if and only if the associated leaves are connected by a path of length at most k. By discovering hidden combinatorial structure of cliques and neighbourhoods, we have developed polynomial-time algorithms that, for k = 3 and k = 4, identify whether or not a given graph G is a k-leaf power of a tree T, and if so, produce a tree T for which G is a k-leaf power. We believe that our structural results will form the basis of a solution for more general k. The general problem of inferring hidden tree structure on the basis of leaf relationships shows up in several areas of application.