Neural Networks Based on Multi-valued and Universal Binary Neurons: Theory, Application to Image Processing and Recognition

  • Authors:
  • Igor N. Aizenberg

  • Affiliations:
  • -

  • Venue:
  • Proceedings of the 6th International Conference on Computational Intelligence, Theory and Applications: Fuzzy Days
  • Year:
  • 1999

Quantified Score

Hi-index 0.00

Visualization

Abstract

Multi-valued and universal binary neurons (MVN and UBN) are the neural processing elements with complex-valued weights and high functionality. It is possible to implement an arbitrary mapping described by partial-defined multiple-valued function on the single MVN and an arbitrary mapping described by partial-defined or fully-defined Boolean function (which can be not threshold) on the single UBN. The fast-converged learning algorithms are existing for both types of neurons. Such features of the MVN and UBN may be used for solution of the different kinds of problems. One of the most successful applications of the MVN and UBN is their usage as basic neurons in the Cellular Neural Networks (CNN) for solution of the image processing and image analysis problems. Another effective application of the MVN is their use as the basic neurons in the neural networks oriented to the image recognition.